

STY139N65M5

Datasheet — production data

N-channel 650 V, 0.014 Ωtyp., 130 A, MDmesh[™] V Power MOSFET in Max247 package

Features

Order code	V _{DS} @T _{jMAX}	R _{DS(on)} max	I _D
STY139N65M5	710 V	0.017 Ω	130 A

- Max247 worldwide best R_{DS(on)}
- Higher V_{DSS} rating
- Higher dv/dt capability
- Excellent switching performance
- Easy to drive
- 100% avalanche tested

Applications

Switching applications

Description

The device is an N-channel MDmesh[™] V Power MOSFET based on an innovative proprietary vertical process technology, which is combined with STMicroelectronics' well-known PowerMESH[™] horizontal layout structure. The resulting product has extremely low onresistance, which is unmatched among siliconbased Power MOSFETs, making it especially suitable for applications which require superior power density and outstanding efficiency.

Order code	Marking	Package	Packaging
STY139N65M5	139N65M5	Max247	Tube

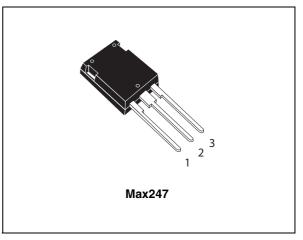
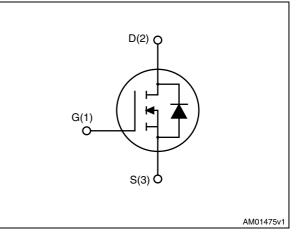



Figure 1. Internal schematic diagram

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuits	8
4	Package mechanical data	9
5	Revision history1	2

1 Electrical ratings

Table 2.	Absolute maximum ratings
Table 2.	Absolute maximum ratings

Cumhal	Deveneter	Value	Unit
Symbol	Parameter	Value	Unit
V_{GS}	Gate- source voltage	± 25	V
I _D	Drain current (continuous) at T _C = 25 °C	130	Α
۱ _D	Drain current (continuous) at T _C = 100 °C	78	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	520	Α
P _{TOT}	Total dissipation at $T_C = 25 \ ^{\circ}C$	625	W
I _{AR}	Max current during repetitive or single pulse avalanche (pulse width limited by T_{JMAX})	17	A
E _{AS}	Single pulse avalanche energy (starting $T_j = 25^{\circ}C$, $I_D = I_{AR}$, $V_{DD} = 50V$)	2400	mJ
dv/dt ⁽²⁾	Peak diode recovery voltage slope	15	V/ns
T _{stg}	Storage temperature	- 55 to 150	°C
Тj	Max. operating junction temperature	150	°C

1. Pulse width limited by safe operating area.

2. $I_{SD} \leq 130$ A, di/dt = 400 A/µs, V_{DD} = 400 V, peak V_{DS} < $V_{(BR)DSS}$.

Table 5.	mermai uala		
Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	0.2	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max	30	°C/W
Τ _Ι	Maximum lead temperature for soldering purpose	300	°C

Table 3. Thermal data

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_{D} = 1 \text{ mA}, V_{GS} = 0$	650			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = 650 V V _{DS} = 650 V, T _C =125 °C			10 100	μΑ μΑ
I _{GSS}	Gate-body leakage current (V _{DS} = 0)	V _{GS} = ± 25 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \ \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 65 A		0.014	0.017	Ω

Table 4. On /off states

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss} C _{oss} C _{rss}	Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} = 100 V, f = 1 MHz, V _{GS} = 0	-	15600 365 9	-	pF pF pF
C _{o(tr)} ⁽¹⁾	Equivalent capacitance time related	$V_{GS} = 0, V_{DS} = 0$ to 520 V	-	1559	-	pF
C _{o(er)} ⁽²⁾	Equivalent capacitance energy related	$V_{GS} = 0, V_{DS} = 0$ to 520 V	-	360	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz open drain	-	1.2	-	Ω
Qg	Total gate charge	$V_{DD} = 520 \text{ V}, \text{ I}_{D} = 65 \text{ A},$		363		nC
Q _{gs}	Gate-source charge	V _{GS} = 10 V	-	88	-	nC
Q _{gd}	Gate-drain charge	(see <i>Figure 15</i>)		164		nC

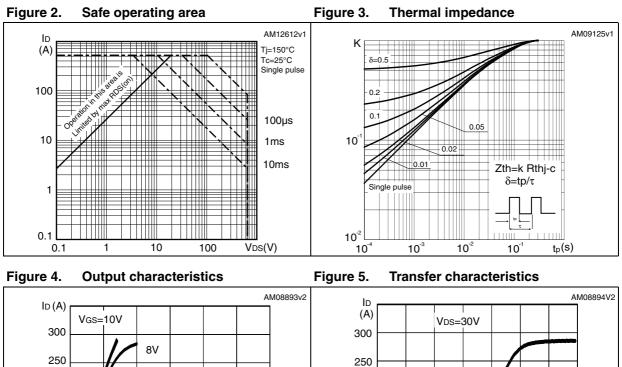
1. $C_{o(tr)}$ is a constant capacitance value that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .

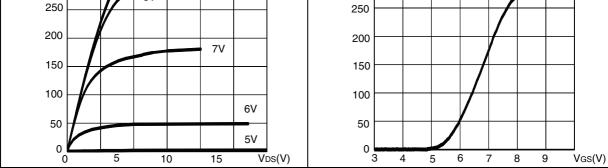
2. $C_{o(er)}$ is a constant capacitance value that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(v)}	Voltage delay time	$V_{DD} = 400 \text{ V}, \text{ I}_{D} = 80 \text{ A},$		295		ns
t _{r(v)}	Voltage rise time	R _G = 4.7 Ω, V _{GS} = 10 V		56		ns
t _{f(i)}	Current fall time	(see Figure 16)	-	37	-	ns
t _{c(off)}	Crossing time	(see <i>Figure 19</i>)		84		ns

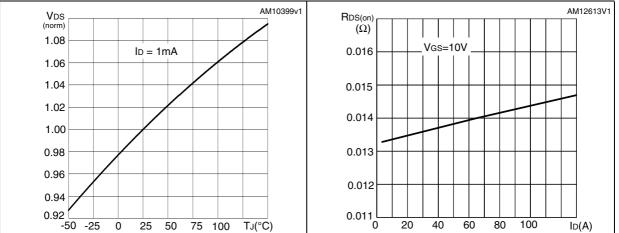
Table 6.Switching times

Table 7.Source drain diode

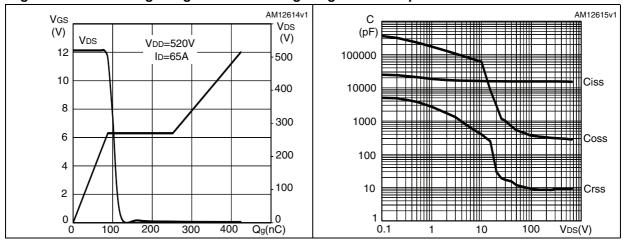

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} ⁽¹⁾	Source-drain current Source-drain current (pulsed)		-		130 520	A A
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 130 A, V _{GS} = 0	-		1.5	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	I _{SD} = 130 A, di/dt = 100 A/µs V _{DD} = 100 V (see <i>Figure 16</i>)	-	570 15 53		ns μC Α
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_{SD} = 130 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$ $V_{DD} = 100 \text{ V}, \text{ T}_{j} = 150 ^{\circ}\text{C}$ (see <i>Figure 16</i>)	-	720 24 68		ns μC Α


1. Pulse width limited by safe operating area.

2. Pulsed: pulse duration = 300 μ s, duty cycle 1.5%



2.1 Electrical characteristics (curves)



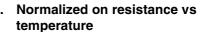


Figure 8. Gate charge vs gate-source voltage Figure 9. **Capacitance variations**

Figure 10. Normalized gate threshold voltage Figure 11. Normalized on resistance vs vs temperature

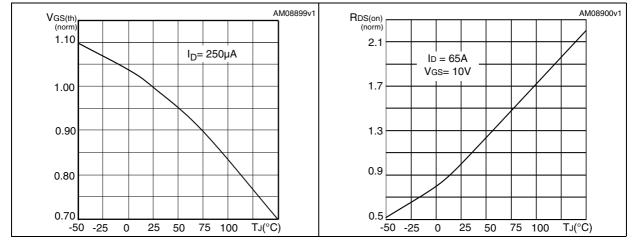
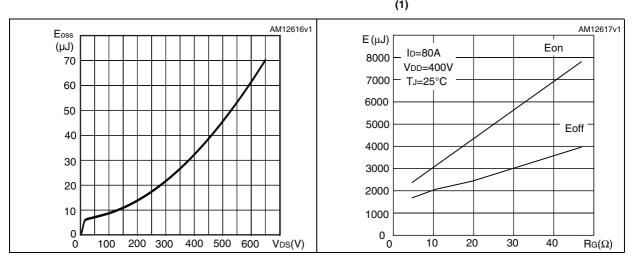
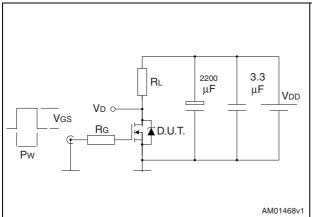



Figure 12. Output capacitance stored energy Figure 13. Switching losses vs gate resistance



1. Eon including reverse recovery of a SiC diode.

3 Test circuits

Figure 14. Switching times test circuit for resistive load

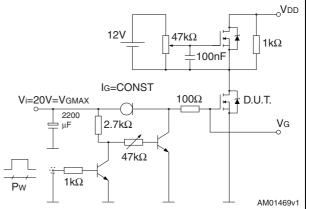
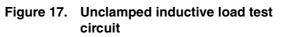



Figure 15. Gate charge test circuit

Figure 16. Test circuit for inductive load switching and diode recovery times

L

J

D.U.T.

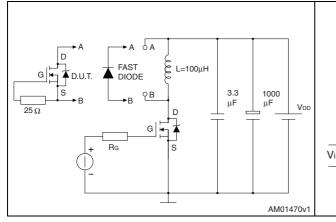
2200

μF

-

3.3

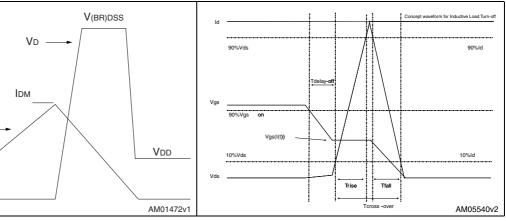
μF


Vdd

AM01471v1

Vd o

lр


0

lр

Figure 19. Switching time waveform

Pw

Vdd

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Dim.		mm	
Dini.	Min.	Тур.	Max.
А	4.70		5.30
A1	2.20		2.60
b	1.00		1.40
b1	2.00		2.40
b2	3.00		3.40
С	0.40		0.80
D	19.70		20.30
е	5.35		5.55
E	15.30		15.90
L	14.20		15.20
L1	3.70		4.30

 Table 8.
 Max247 mechanical data

57

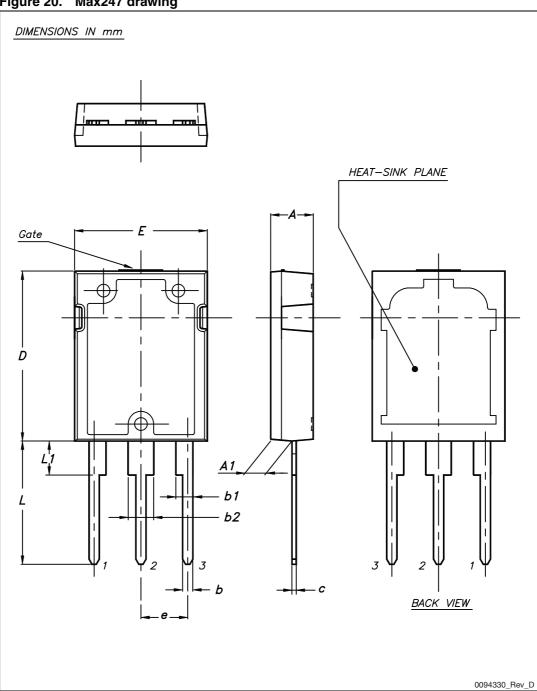
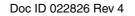



Figure 20. Max247 drawing

5 Revision history

Table 9. Doc	ument revision history
--------------	------------------------

Date	Revision	Changes
09-Mar-2012	1	First release.
04-Apr-2012	2	Inserted new Section 2.1: Electrical characteristics (curves). Updated Section 4: Package mechanical data.
19-Apr-2012	3	Document promoted from preliminary data to production data. Updated <i>Section 4: Package mechanical data</i> .
24-Jan-2013	4	 Minor text changes Modified: I_{AR} E_{AS} values on <i>Table 2</i>

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 022826 Rev 4

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

STMicroelectronics: STY139N65M5